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Overlap Graph Representation of B 6 and B 7 
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The virial coefficients B~ of the pressure of a thermodynamic system can be 
represented in terms of graphs. The recently defined overlap graphs are studied 
in detail. Furthermore, the overlap graph representation of the sixth and seventh 
virial coefficients (B 6 and BT) is determined. 
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1. INTRODUCTION 

A new type of graphs representing virial coefficients has been introduced 
recently. (1) The virial coefficients B n are defined by 

P/(pkeT) = 1 + ~ gnp n - I  (l) 
n=2  

P is the pressure, p the number density, k B Boltzmann's constant, and T the 
absolute temperature. The thermodynamic limit is considered. The overlap 
graphs contributing to  B 2 and B 3 are the integrals 

[ 1 ]2 = f f12dr2 

[113= f ~2f,3f23dr2dr3 (2) 

The expressions "clusters," "(cluster) integrals" and "graphs" are under- 
stood to be synonymous, fj is the usual Mayer f function, ~ the modified f 
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[112 [1] 3 [2]~ [31z. [415 [515 [715 [915 [1015 

Fig. 1. Overlap graphs up to five corners. 

function,(2) 

~ = f j  + l=exp[-u i j / (kBT)]  (3) 

u~j = u(rsj ) being the spherically symmetric pair interaction energy. Figure 1 
displays the overlap graphs contributing to B n, n ~< 5. The corners (circles) 
correspond to the integral variables [cf. (2)]. All circles but one are black. 
Over the black circles it is integrated. The white circle, without loss of 
generality variable 1, is held fixed. A solid bond between two corners i, j 
symbolizes f)., a dotted l ine~ .  No bond between i a n d j  just corresponds to 
the factor 1 in the integrand. Compare the two ways of presentation of [112 
and [1]~ in Eq. (2) and Fig. 1. The term overlap graph comes from its 
geometrical interpretation for hard-core potentials. (1) 

Definition 1.1. An overlap graph is a simple graph with l corners, 
l >/2. Corner 1 is a white circle, the others are black circles. If l - -  2, an 
f-bond connects corners 1 and 2. If l > 2, there are two types of corners. 
Type A: 1 . . . . .  k; type B: k + 1 , . . . ,  i (1 < k < l). Each pair of corners 
of type A is connected by an f bond. The corners of type B are not 
connected among themselves. However, each of them is connected by f 
bonds with at least two.corners of type A. Finally, no corner of type A is 
disconnected from all corners of type B. 

The case l = 2 formally corresponds to k = 1 (cf. Fig. 1). The above 
definition will be discussed in Section 2. Since all corners of type A are 
connected with each other by fbonds ,  the simplified representation chosen 
in Fig. 1 is possible, the corners 1 . . . . .  k lying on a dotted line. 

In the well-known Mayer graphs, no f b o n d s  occur. It follows from the 
definition of an overlap graph that it becomes a Mayer graph if all f b o n d s  
are replaced by f bonds. (1) Moreover, only one overlap graph turns into a 
given Mayer graph. Thus, they correspond to each other. As to the 
designation, an overlap graph with l corners is called [rn]t if the correspond- 
ing Mayer graph is (m)t, the numbering of Mayer graphs being due to 
Ref. 3. 



Overlap Graph Representation of B 6 and B 7 131 

B~ to B 5 can be represented via overlap graphs as follows (11: 

-3B3=[113  

1 --8B4 = 31214+ [314-3  [ ]% 123 (4) 

-30B5 = 61415+ 121515+ 181715+41915+[10t5 

-1811121214-411321314-t5[1]~+ 12[1]~[113- 6[1] 4 

Generally, B, is represented by (products of) overlap graphs [m]l, l < n. It 
is the aim of the present paper to find out the overlap graph representation 
of B 6 and B 7. 

2. OVERLAP GRAPHS OF THE FIRST, SECOND, AND THIRD KIND 

The starting point for using overlap graphs was an expansion of the 
canonical partition function, ( 1,4~ the system being confined within a volume 
V. Assume that the partition function does not depend on the shape of the 
volume. Taking the thermodynamic limit, this results in virial coefficients (1) 
which are correct up to B 4 but false for higher B,,. The graphs occurring in 
this expansion are overlap graphs of the first kind. 

Definition 2.1. Overlap graphs of the first kind are special overlap 
graphs. The last condition of Definition 1.1, "no corner of type A is 
disconnected from all corners of type B" has to be replaced by the stronger 
restriction. "At least one corner of type B is connected with all corners of 
type A." 

All overlap graphs displayed in Fig. 1 are of first kind except for [5]5. 
Thus, B s cannot be represented by overlap graphs of the first kind only. 
This was the reason to generalize the concept of overlap graphs. The last 
restriction of Definition 1.1 is necessary since an unique representation of 
B~ is intended. This restriction bein~ dropped, a graph~like g in Fig. 2 
results. Using Eq. (3), i.e., replacing fl 3 by (f13 + 1) and f23 by (f23 + 1), a 
sum in terms of known overlap graphs results. Thus g can be replaced by 

o 

g V[1] 3 2111211] 3 [2IL, 

Fig. 2. Expansion of graph g in terms of overlap graphs. 
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overlap graphs. Additionally, g is infinite in the thermodynamic limit, 
which might be avoided by taking 

g -  V[II3= 2[112[113+ [214 (5) 

Figure 2 also explains the restriction of Definition 1.1 that each of the 
corners of type B is connected by f bonds with at least two corners of type 
A. If this is not the case, either clusters of infinite value (V[113--)CO) or 
products of overlap graphs ([1121113) occur. 

If (.s + 1) is inserted instead of ~ for all fbonds ,  the overlap graph 
[m]z changes into a sum of terms which are (products of) Mayer graphs. 
The first term in this expansion is the corresponding Mayer graph (re)l, all f 
turning into f. The last term is a graph G where all f b o n d s  of [m]z have 
been canceled. If [m]t is of first kind, G is automatically connected. 

Definition 2.2. We consider an overlap graph which is not of first 
kind. Canceling a l l fbonds  results in a new graph G. If G is connected, the 
original graph is called an overlap graph of the second kind. 

B 5 can be represented by overlap graphs of the first and second kind 
[cf. Eq. (4) and Fig. 1]. This is no longer the case from B 6 on. Thus, we are 
tempted to consider overlap graphs with G disconnected, which is possible 
for n/> 6 corners. However, such graphs have the same disadvantage as 
graph g in Fig. 2: they are infinite in the thermodynamic limit. To avoid 
this, the "infinite part" of the original graph has to be subtracted (cf. Fig. 
3). To avoid problems when considering m - oe, the difference may be 
interpreted as a difference of the finite integrands [cf. (2)] and not of the 
infinite integrals. 

[30] a [160] 7 [395]  7 

Fig. 3. Overlap graphs of the third kind with six and seven corners. 

Definition 2.3 .  We assume that an overlap graph [m]} is not of first 
or second kind. Thus, G is disconnected (cf. Definition 2.2). G r is the graph 
which results when only those f functions are reinserted which leave the 
graph disconnected. Then, [rnlt = [m]}- Gr is called an overlap graph of 
the third kind. 

Now, we are about to encounter overlap graphs of the third kind. In 
Fig. 3, the three overlap graphs of the third kind with 6 and 7 corners are 
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displayed. The corresponding G r are 

I30] : Gr = vI 

[16017: G~= V[1131214 (6) 

[ 395 ]7 :  G,.= V[I ]31314 

The above definitions have been chosen so as to be comprehensible. 
However, formally an overlap graph of the third kind turns out not to be 
an overlap graph in the sense of Definition 1.1. This may be corrected by 
defining G~ = 0 (null graph, integral value zero) for overlap graphs of the 
first and second kind. The condition "leaving the graph disconnected" of 
Definition 2.3 cannot be fulfilled in these cases. If [m]} is an overlap graph 
in the sense of Definition 1.1, the overlap graph [m]z is given by 

[m] ,= [m]} - G  r (7) 
i.e., [rn]z = [m]} for overlap graphs of the first and second kind. 

Figure 1 displays all overlap graphs up to five corners, Fig. 3 the 
overlap graphs of the third kind with six and seven corners. For comple- 
tion, Figs. 4 and 5 show the overlap graphs of the first and second kind 
with six and seven comers, respectively. Overlap graphs of the second kind 
are marked by a star. In Fig. 5, the subscript 7 of [m]7 is omitted for  
simplicity. The numbering of the l corners is in all cases as follows. Corners 
1 . . . . .  k (type A) lie on a dotted line from left to right. Corners k + 
1 . . . . .  l (type B) are numbered clockwise, starting from right below (cf. 
[1416 in Fig. 4). The numerical characterization of an overlap graph has 
only to take into account the f bonds since all corners of type A are 
connected with each other b y f  bonds. For instance, the code for [1516, Fig. 
4, is 

[1516:414251526163 according tof4,f42fs,f52f61f63 (8) 

the code / j  being used for f~j, i > j .  The i are in an ascending order. This is 

5 15 

[1 .12 [1517 .6J2 [2aJ6 i2916 I o16 I lJ2- 

[4816 [,'-916 [50]~ [5316 [5516 [5615 

Fig. 4. Overlap graphs of the first and second kind with six corners. The latter graphs are 
marked by a star. 
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[76] [77]* [78] ~ [79] x- [158] [159] 

[162] [163] ~ [164.]* [252] [254.] [255]*  

[256]* [257] x [259] ~- [333] [334.] [335] 

[336] [337] 'x- [339] x- [34.0]* [342] ~ [392] 

[393] [394] [&O0]* [/.02] ~ [4.30] [/.31] ~ 

[4.32] [434] [435]* [4.50] [4.511 [4.52]* 

[460] [461] [4.62]* [4.65] [4.671 [4.68] 

Fig. 5. Overlap graphs of the first and second kind with seven corners. The latter graphs are 
marked by a star. 

also the case f o r j  within the same i. The first number (4 for [1516 ) is k + 1, 
the last but one (6 for [1516 ) is l. For overlap graphs of the third kind, Ira]} 
is encoded for simplicity instead of [m]t [cf. Eq. (7) and Fig. 3]. One may 
interpret the code 414251526163 for [1516 as decimal number d. On the 
other hand, the numbering of the corners is not essential. It follows that in 
general there are various equivalent representations of an overlap graph. In 
all cases, the representation yielding minimum d has been chosen (cf. Figs. 
1, 3, 4, and 5). 

3. SIXTH AND SEVENTH VIRIAL COEFFICIENTS 

Up to B4, the overlap graph representation of B n can be directly 
evaluated (1'4) (cf. Section 2). From B 5 on, an indirect way using Mayer 
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graphs is necessary. One has to expand overlap graphs in terms of Mayer 
graphs via Eq. (3) and employ the Mayer graph representation (3) of B, 
known for n < 7. As illustration, we consider B 4. The Mayer graph repre- 
sentation of B 4 is 

- - 8 B  4 = (3)4+ 6(2)4+ 3(1)4. (9) 

Expanding the overlap graphs yields (1) 

I E314 ] [ 
[ 2 1 4  /=-1 0 

[I]211]31 ~ ~ 
[I]32] 

3 0 3 
1 1 0 
0 0 1 
0 0 0 

(3)4 

(1)4 
(1)2(1)3 

(1)32 

(lO) 

The strange representation chosen in (9) and (10)--descending order of m 
in [m]l and (m)l--corresponds to a descending number of bonds. This is 
adapted to the actual calculation of the overlap graph representation (cf. 
Table I). 

Table I shows how the coefficients of [3]4 . . . . .  [1] 3 are determined 
successively from the known Mayer graph representation of B 4. As to the 
result, see (4). The number zero has been suppressed in Table I except 
where it occurs first in a sum. The order of determination according to 
descending number of bonds makes it possible to evaluate the coefficients 
uniquely step by step without changing the result in one of the next steps. 

If a solution for the overlap graph representation of B n exists, it is 
unique. However, the existence of a solution is by no means trivial: the 
problem can be formulated as a system of kM linear equations with k o 

unknown quantities, k o and kM being the number of (products of) overlap 
graphs and Mayer graphs, respectively. From B 4 o n ,  k 0 < k M [c f .  ( 1 0 )  and 
Tables I and II]. Thus not all linear equations can be independent for a 

Table h Evaluation of the Overlap Graph Representation of B 4 

(3)4 (2)4 (1)4 (1)2(1)3 (1)2 

-- 8B 4 1 6 3 
- [ 3 ] 4  - 1 - 3 - 3 - 1 

Sum 0 3 3 - 3 - 1 
- 3[2] 4 - 3 -3  
Sum 0 0 - 3 - 1 

+ 311121113 3 3 
Sum 0 2 

-21112 - 2  
Sum 0 
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Table II. Number of (Products of) Overlap Graphs Compared with Mayer 
Graphs, n Being the Total Number of Corners 

Overlap Products Total Mayer Products Total 
graphs of overlap graphs (k0) graphs of Mayer graphs (k~t) 

2 1 0 1 1 0 1 
3 1 1 2 1 1 2 
4 2 2 4 3 2 5 
5 5 5 10 10 6 16 
6 14 12 26 56 19 75 
7 44 35 79 468 92 560 

solution to exist. For instance, the second sum in Table I shows that two 
zeros occur at once, which reflects the above-mentioned dependency. 

In Ref. 1, the assumption that a solution exists for any B, was termed 
overlap conjecture. In that paper, the overlap graph representation of B,, 
n < 5, was given. Table II displays how restrictive the overlap conjecture 
really is for B 6 and especially for B 7 . However, explicit calculation for B 6 

and B 7 shows that a solution exists for both virial coefficients. Using the 
expansion of overlap graphs in terms of Mayer graphs, (5-7) it follows that 

-144B6 = ~ Cm[m]6-[112{601415 + 1001515 + 1401715 
/7"1 

+ 30[9]5 + 5[ I015 } -[I]3{1801214 + 601314) 

1 2 90[ ]23 +[ ]2(1101214+201314} + I]2[I 

- 60111321113+ 2411152 

- 840B v 

(11) 

=2Dm[m]7--[l]22 m[m]6 
-[113{6301415 + 12601515 + 18901715 +420[9]5  + 105[ 1015 } 

+[1122{5251415 + 780[5]5 + 105017]s + 220[9]5 + 30[ 1015 } 

- (63012124+42012141314+7013142} +[I]21113 

• {18901214 + 420[3]4 ) -[1132{7501214 + 1201314 ) 

+ 84011133 - 630[I]~[I]23+ 360[I ]~[ I ]3-  12011162 (12) 
m 

The coefficients C m, C m, and D m are exhibited in Table IIl. As a first 
application, B 6 has been calculated for hard disks via direct Monte Carlo 
integration of [m]6.  The result is B6/B  ~ = 0.19883 + 0.00001 compared 
with the best value (8) up to now, 0.19893 +__ 0.00024. This shows the merits 
of using overlap graphs. A table displaying the single values of [m]6 for 
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Table III. Expansion coefficients C m, C m and D m of the overlap graphs [m]6 
and [m]7 [cf. Eqs. (11) and (12)] 

[m]6 Cm Crn [m]7 Dm [m]7 Dm [m]7 Dm 

[1416 10 150 [76]7 15 [259]7 510 [430]7 225 
[1516 100 1290 [77]7 270 [333]7 150 [43117 90 
[1616 40 510 [78]7 240 [334]7 630 [432]7 120 
[28]6 60 750 [79]7 510 [335]7 225 [434]7 420 
[29]6 140 1740 [15817 150 [336]7 180 [435]7 60 
[30]6 10 105 [15917 1110 [337]7 225 [450]7 75 
[40]6 80 975 [ 160]7 105 [339]7 270 [451 ]7 160 
[4116 50 510 [16217 390 [340]7 1110 [452]7 150 
[48]6 40 375 [16317 90 [342]7 330 [460]7 80 
[49]6 10 120 [16417 360 [392]7 675 [46117 15 
[50]6 30 300 [252]7 300 [393]7 20 [462]7 60 
[53]6 30 280 [254]7 630 [394]7 780 [465]7 45 
[55]6 5 45 [255]7 240 [395]7 35 [467]7 6 
[56]6 1 6 [256]7 810 [400]7 300 [468]7 1 

[257]7 495 [402]7 240 

hard disks can be obtained directly from the author. This is also the case 
for [m]6 and [m]7 in the parallel hard-cube model (in one, two, and three 
dimensions). The values of these overlap graphs have been calculated via 
the Mayer graph values exactly known up to seven corners for the hard- 
cube model. (3~ 

The overlap graph expansion turns out to be of advantage especially 
for B 6 and B7, the number of graphs being relatively small. On the other 
hand, the roundabout way of determining the coefficients via the Mayer 
graph representation is tedious, especially if one would like to investigate 
further B n. Nevertheless, some regularities of the result up to B v can be 
stated. For instance, every overlap graph (product) really contributes to B n. 
In the Mayer graph expansion of Bn, all graphs occur, but no product. As 
can be seen from (4), (11) and (12), the sign of the coefficients is given by 
- ( -  1)p, p being the number of products of overlap graphs. Furthermore, 
the absolute value of the coefficient of [1]~ -1 is ( n -  2)! in all considered 
cases. The coefficient of [m]~ with the largest m is 1. However, a general 
proof of the overlap conjecture is lacking. Such a proof together with a 
direct method of evaluating the coefficients of overlap graphs would be 
worthwhile. 
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